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Introduction 
The material in the previous section is concerned primarily with the origin of diffraction 
peaks and the application of the reciprocal lattice to the interpretation of peak positions.  This 
section is concerned primarily with the other aspect of X-ray diffraction data – the intensity 
of the diffraction peaks and how variations in those intensities are related to the chemistry 
and arrangement the atoms in the crystal structure of the analyzed material.  This section 
concludes the basic theory of X-ray diffraction.  Although the balance of the course will be 
concerned with use of the powder diffractometer to acquire and interpret experimental data, 
basic understanding of the theory is essential in any successful practical application.   

Material in this section is taken from a variety of sources, primarily Jenkins and Snyder 
(1996) and Nuffield (1966), supplemented by notes from a short course on powder 
diffraction taken by the author at the International Center for Diffraction Data (ICDD) during 
the summer of 2002.   

Intensity Variations in X-ray Powder Data 

Overview 
The position of diffraction peaks and the d-spacings that they represent provide information 
about the location of lattice planes in the crystal structure.  Each peak measures a d-spacing 
that represents a family of lattice planes.  Each peak also has an intensity which differs from 
other peaks in the pattern and reflects the relative strength of the diffraction.  In a diffraction 
pattern, the strongest peak is, by convention, assigned an intensity value of 100, and other 
peaks are scaled relative to that value.  Although peak height may be used as a qualitative 
measure of relative intensity, the most accurate measure of intensity relationships in a pattern 
is the area (minus background) under the peaks.   

Variations in measured intensity are related chiefly to variations in the scattering intensity of 
the components of the crystal structure – the atoms, molecules – and their arrangement in the 
lattice.  Some of the most dramatic variations are related to interference between diffractions 
produced in the lattice; these can produce systematic extinctions or greatly reduced 
intensities of peaks from certain lattice planes.   

Scattering 
In diffraction, we are concerned with coherent scattering, that is, the scattering in which the 
incident X-rays interact with a target atom, exciting it and causing it to be a secondary point 
source of X-rays of the same energy (wavelength).  The intensity of that scattering is the 
result of a variety of processes the sum of which results in scattering which “looks” like it 
comes from the atom as a whole.   

Scattering by an Electron  
An electron will oscillate in phase with an x-ray beam according to the following equation 
(called the Thompson equation after J.J. Thompson who demonstrated the relationship in 
1906):   
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where I0 is the intensity of the incident beam; e the charge on the electron; me the mass of the 
electron; c the speed of light; and r the distance from the scattering electron to the detector 
(with the r2 term in the denominator expressing the inverse square law).  Clearly (by the 
second term) the scattered energy from a single electron is quite low.  Third term, involving 
the cosine function, is called the polarization factor because it indicates that the incoming 
non-polarized x-ray is polarized by the scattering process, resulting in a directional variation 
in the scattered intensity.   

Scattering by an Atom  
Scattering by an atom is essentially the sum of the scattering of the electron “cloud” around 

the nucleus.  

The process is illustrated in the 
simplified diagram at left (Fig. 
3.12 from Jenkins and Snyder, 
1996).  Scattering from each 
electron follows the Thompson 
equation.  Because of the 
distance between electrons 
scattering within the atom and 
the fact that the x-ray 
wavelength is of the same order 
as the atomic dimensions, there 
will be path differences between 
the scattered waves.  These 
differences will always be less 
than one wavelength, so the 
interference will always be 
partially destructive.   

This phenomenon is called the 
atomic scattering factor, described by the quantity f0.  This function is normalized in units of 
the amount of scattering occurring from a single electron in the Thompson equation.  At zero 
degrees, f0 will be equal to the number of electrons surrounding the atom or ion.  At higher 
scattering angles, the factor will be less.  f0 is generally expressed as a function of sinθ  and λ 
as shown below for Cu (Fig. 3.13 from Jenkins and Snyder, 1996).    

The actual shape of the f0 function is calculated by integrating scattering over the electron 
distribution around an atom.  These calculations involve very complex quantum 
approximation methods and have been compiled in the International Tables for 
Crystallography (Vol. 3).  Atomic scattering factors are usually given either in tables as a 
function of (sinθ)/λ or as coefficients of polynomials fit to curves like those shown in Figure 
3.15 (from Nuffield, 1966).    
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Anomalous 
Scattering 

Anomalous scattering 
or anomalous 
dispersion occurs 
when the incident x-
ray energy is sufficient 
to cause photoelectric 
x-ray production in a 
target atom.  The 
process is called 
fluorescence.  This 
phenomenon is 
responsible for 
“absorption edge” 
phenomenon that 
occurs with certain 
elements when 
interacting with 
particular wavelength 
x-rays.  In this process 
a characteristic x-ray 
photon is produced in 
the target; subsequent 
interaction produces 
coherent x-rays which 

are slightly out of phase with other coherently scattered x-rays.  The net result is a reduction 
of the scattered intensity from the element.    

This “absorption edge” phenomenon is responsible for reduction of diffracted intensity for 
materials containing certain elements.  The table below lists the common x-ray source anodes 
and the elements for which this absorption effect occurs.   

Target (Anode) 
Element 

λ of Kα1 in 
Angstroms  

Elements with 
strong fluorescence 

Cr 2.2909 Ti, Sc, Ca 

Fe 1.9373 Cr, V, Ti 

Co 1.7902 Mn, Cr, V 

Cu 1.5418 Co, Fe, Mn 

Mo 0.7107 Y, Sr, Rb 

Quantitatively, the calculation of the correction to f0 involves a real (Δf’) and imaginary 
(Δf’’) term.  The effective scattering will be:  

22
0

2 )()( ffff ′′Δ+′Δ+=  
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Values for the coefficients are tabulated in the International Tables for Crystallography.  In 
actual practice, these corrections are only significant for those elements for which absorption 
edge fluorescence effects are significant.   

Thermal Motion 

The thermal vibrational amplitude of the atom will have an effect on x-ray scattering.  The 
effective scattering is described by the following relationship: 
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B is the Debye-Waller temperature factor and is defined as: 228 UB π= .   U2 is the mean-
square amplitude of vibration of an atom, and is directly related to the thermal energy (kT) 
available with other terms related to atomic mass and the strength of interatomic bonds.  
Qualitatively, as T increases (other factors constant), B will increase.  When B = 0, the 
scattering will follow the Thompson equation.  As B increases, scattering will be reduced in 
amplitude.  This relationship is shown in Fig 3.14 (Jenkins and Snyder, 1996) below:  

 
Unlike other scattering factors, the computation of the temperature factor is extremely 
complex, based on tensor relationships on which there is not widespread general agreement.   

Scattering of X-Rays by a Unit Cell: The Structure Factor 

The unit cells of most crystalline substances contain a several different elements whose 
atoms are arranged in a complex motif defined by a variety of point group symmetry 
elements and replicated by translational elements into a three-dimensional lattice array.   

The structure may be thought of as repeating planar arrays of atoms.  The geometry of peaks 
is related fundamentally to positions of those atoms with little regard to what those atoms are.  
Intensity, on the other hand, is definitely related to the composition because the intensity of 
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scattering is related to atomic scattering.  The structure factor is a means of grouping the 
atoms in the unit cell into planar elements, developing the diffraction intensities from each of 
those elements and integrating the results into the total diffraction intensity from each dhkl 
plane in the structure.   

We can define F(hkl) as the structure factor for the (hkl) plane.  A particular (hkl) plane is the 
result of reflections from a series of parallel atomic planes where f1, f2, f3, etc. are the 
amplitudes of the respective atomic planes.  The phase factors (φN) are the repeat distances 
between the atomic planes measured from a common origin.  The general expression for the 
structure factor for a (hkl) is:  

),()( NNN
fhklF φΣ=  

where fN is the f value of the Nth kind of atom in the cell, and φN is its phase factor.  This 
relationship is most easily visualized as an addition of vectors as shown in the diagram below 
(Fig. 3-16 from Nuffield, 1966).   

In this diagram, three 
different atoms, P, Q 
and R are arranged in a 
two-dimensional lattice 
repeating at interval dhkl 
(Fig. 3-16a).   Nuffield 
presents the structure 
factor in slightly 
different terms as shown 
by the expressions for 
φP, φQ, and φR.   

F(hkl) is shown as the 
sum of the component 
vectors.  Though the 
mathematics of the 
actual calculations in 
three dimensions 
involve complex tensor 
operations, it is 
conceptually useful to 
understand the structure 
factor as a summation of 
directional vectors.   

For a more rigorous 
treatment of the 
structure factor, the 

reader is referred to Nuffield (1966), Jenkins and Snyder (1996) or any other text on x-ray 
diffraction.   
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Extinction 
In certain lattice types, the arrangement and spacing of lattice planes produces diffractions 
from certain classes of planes in the structure that are always exactly 180° out of phase 
producing a phenomenon called extinction.  In these cases, certain classes of reflections from 
valid lattice planes will not produce visible diffractions.   For example, for a body-centered 
cubic cell, for each atom located at x, y, z there will be an identical atom located at x+½, 
y+½, z+½.  The structure factor Fhkl is represented by the following equation.    

[ ] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡ ++++++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++= ∑Σ

== 222
(2exp(2exp

2/

1

2/

1

llzkkyhhxiflzkyhxif jjj

m

n
njjjn

m

j
hkl ππF  

While complicated, it is noted that if h + k + l is even, then the second term will contain an 
integer, n, in it.  An integral number of 2π’s will have no effect on the value of this term and 
the equation reduces to: 
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If h + k + l is odd, however, the second term will contain an integer with a 2π(n/2) term; here 
n is any integer and represents a full rotation of the scattering vector.  This causes the second 
term to be negative, and the net result is there is no diffracted intensity (since Fhkl = 0).  This 
condition is called a systematic extinction.  The table below lists the systematic extinction 
conditions due to translational symmetry elements1:  

Symmetry Extinction Conditions 

P none 

C hkl; h + k = odd 

B hkl; h + l = odd 

A hkl; k + l = odd 

I hkl; h + k + l = odd 

F hkl; h, k, l mixed even and odd 

21 ║ b 0k0: k = odd 
bc ⊥  h0l: l = odd 

Other systematic extinctions can occur as a consequence of rotational operations (screw axes 
and glide planes).   
Extinctions can also be caused by atomic scattering vectors that happen to cancel each other 
out and are not related to systematic lattice parameters; these are not easily predictable and 
are called accidental extinction.   

                                                 
1 P = primitive lattice; C, B, A = side-centered on c-, b-, a-face; I = body centered; F = face centered (001)  
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Summary of Factors Affecting Relative Intensity of Bragg Reflections 
By considering all of the factors affecting the relative intensity diffractions produced by the 
lattice planes of a crystal structure, it is possible to calculate a theoretical diffraction pattern 
for virtually any crystalline material.  The ICDD 2006 PDF-4+ database contains almost 
60,000 patterns calculated based on these factors, and the Inorganic Crystal Structure 
Database (ICSD) includes the calculated patterns and all of the detailed crystal structure data 
that can be used as a starting point for detailed pattern refinements done on experimental 
data.  We will not actually do these calculations, but it is important to be aware of these 
factors when you interpret your data.  They are summarized in the following sections.   

Multiplicity of Bragg Planes 
The number of identically spaced planes cutting a unit cell in a particular hkl family is called 
the plane multiplicity factor.  For low symmetry systems, the multiplicity factor will always 
be low.  For high symmetry systems, a single family of planes may be duplicated many times 
by symmetry operations, and each “duplicate” will add to the intensity of the diffraction.  As 
an example, each cubic crystal face has a diagonal (110) and an equivalent )101( plane.  
With six faces, there are 12 crystallographic orientations.  The (100) will similarly have 6 
orientations.  Thus, the (110) family will have twice the intensity of the (100) family because 
of the multiplicity factor.   

Multiplicity factors for the various crystal classes and planes are given in Table 3.3 (from 
Jenkins and Snyder, 1996) below:  

 
The Lorentz Factor 
When each lattice point on the reciprocal lattice intersects the diffractometer circle, a 
diffraction related to the plane represented will occur.  The diffractometer typically moves at 
a constant 2θ rate, the amount of time each point is in the diffracting condition will be a 
function of the diffraction angle.  As angles increase, the intersection approaches a tangent to 
the circle; thus at higher angles, more time is spent in the diffracting condition.  This may be 
corrected by inserting the term I/(sin2θ cosθ) into the expression for calculating diffraction 
intensities; this is called the Lorentz factor.  In practice, this is usually combined with the 
atomic scattering polarization term (Thompson equation) and called the Lorentz polarization 
(Lp) correction.   

Extinction 
In addition to systematic extinctions related to crystal structure, another extinction 
phenomenon can occur which is related to a phase-shifted reflection which can occur from 
the underside of very strongly reflecting planes.  Directed towards the incident beam but 
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always 180° out of phase with it, the net effect is to reduce the intensity of the incident beam, 
and secondarily the intensity of the diffraction from that plane.   

A similar phenomenon will reduce the penetration of the beam into strongly diffracting 
planes by reducing the primary beam energy which is redirected into the diffracted beam.   

Corrections have been devised that require knowledge of the diffraction domain size, but this 
is very difficult to ascertain.  Usually attempts to reduce this effect by thermally shocking the 
sample, inducing strains that reduce or eliminate the effect.  The simplest way to reduce this 
effect is to make sure that particle size is uniformly fine.  The effect will be reduced in 
samples in which the sizes of diffracting crystallites are consistently less than 1 μm, however 
this effect can still reduce the experimental intensities of the strongest reflecting peaks by up 
to 25%.   

Absorption 
Absorption phenomena related to fluorescence effects have already been discussed.  
Absorption also occurs related to the area of a powder specimen and depth of penetration of 
the x-ray beam into the specimen.  In general, with a Bragg-Brentano diffractometer, the 
larger area of sample irradiated at low 2θ values have less depth of penetration.  At higher 2θ 
values, the irradiated area will smaller, but depth of penetration greater.  In general, these 
tend to be offsetting effects as related to diffracted intensity over the angular range of the 
data collection.  The calculated intensity will include a term for 1/μs where μs is the linear 
absorption coefficient of the specimen.   

Microabsorption 
Microabsorption is a phenomenon that occurs in polyphase samples.  Typically the linear 
absorption coefficient is calculated based the proportions of the phases in the mixture.  
Microabsorption occurs when large crystals preferentially interact with the beam causing 
both anomalous absorption and intensities not representative of the proportions of the phases.  
The effect is minimized in diffraction experiments by decreasing the crystallite size in the 
specimen.  

Monochromator Polarization 
As noted previously, the diffracted beam is partially polarized by the diffraction process.  A 
crystal monochromator can modify the intensity of the diffracted beam, thus a term related to 
the diffraction angle of the monochromator (θm) is added to the (Lp) correction.  It should be 
noted that for pyrolitic graphite (PG) monochromators, the curved crystal geometry tends to 
minimize the intensity loss due to the polarization effect such that the correction term tends 
to over estimate the intensity loss.   

The Intensity Equation 
All of the previous factors affecting the intensity of a diffraction peak may be summarized in 
the following equations.  Though we will not actually calculate diffraction patterns with these 
equations in this course, it can be done and is done regularly to produce the “calculated 
patterns” in the ICDD Powder Diffraction File database.  This section is directly extracted 
from Jenkins and Snyder (1996).   
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The Intensity of diffraction peak from a flat rectangular sample of phase α in a diffractometer 
with a fixed receiving slit (neglecting air absorption), may be described as: 
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where: 

• I0 = incident beam intensity 

• r = distance from the specimen to the detector 

• λ = wavelength of the X-radiation 

• (e2/mec2)2 is the square of the classical electron radius 

• μs = linear attenuation coefficient of the specimen 

• vα = volume fraction of phase α in specimen 

Also, K(hkl)α is a constant for each diffraction reflection hkl from the crystal structure of phase 
α:  
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where: 

• Mhkl = multiplicity for reflection hkl of phase α 

• Vα = volume of the unit cell of phase α 

• the fraction in parentheses equals the Lorentz and polarization corrections for the 
diffractometer (Lp)hkl, including a correction for the diffracted beam monochromator 

• 2θm = the diffraction angle of the monochromator 

• F(hkl)α = the structure factor for reflection hkl including anomalous scattering and 
temperature effects 

Chapter 3 of Jenkins and Snyder (1996) includes a sample calculation of a diffraction pattern 
for potassium chloride (KCl).  Students are encourage read the chapter and follow the 
procedures used in these calculations. This simple cubic example with two elements in the 
unit cell can be handled with relatively simple calculations.  More complex diffraction 
pattern calculations are done with computers and programs specifically written for the 
purpose.   
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Anisotropic Distortions of the Diffraction Pattern 
The figure at below (from Jenkins and Snyder, 1996) schematically illustrates the 
progression from atoms to crystalline structure.   

A crystallite comprises a number of cells systematically grouped together to form a 
coherently diffracting domain.  If the cells are not identical, and show variations in atomic 

position destroying long range 
order, the material is 
amorphous.  Where individual 
cells are highly ordered, the 
material is called crystalline.  
The “ideal” situation is that the 
individual crystallites in the 
sample are completely random.  
When the crystallites take up 
some common orientation, the 
specimen is showing preferred 
orientation.   

In general, the most desirable 
analytical situation in a 
specimen is to have completely 
random orientation of uniformly 
small crystallites which possess 
sufficient long range order such 
that each crystallite diffracts 
strongly.  Some types of 
diffraction analysis (i.e., the 
study of clay minerals) make use 

of preferred orientation of these crystallites, and in other types of analysis (i.e., qualitative 
phase identification) preferred orientation can be recognized and worked around to yield 
useful results in spite of it.   

Preferred Orientation 
Many natural and engineered materials exhibit preferred orientation as a characteristic 
property of the material.  Some types of ceramic magnets, extruded wires, most pressed 
powders and many engineered films and polymers require manipulating and measuring 
preferred orientation.  This frequently involves the use of a special pole-figure diffractometer 
to measure a particular single diffraction.   

In general powder diffraction data, preferred orientation is probably the most common cause 
of deviation of experimental diffractometer data from the ideal intensity pattern for the 
phase(s) analyzed.  Preferred orientation can be recognized and compensated for when 
identifying crystalline phases in a specimen, but is much more difficult to deal with when 
attempting to do quantitative analysis or precise unit cell calculations.   

The most common way of dealing with preferred orientation in a material of known 
composition is to compare the diffraction intensities of the specimen showing preferred 
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orientation with the calculated (random) pattern for the material.  Some data analysis 
software (including MDI’s Jade) will adjust data to correct for preferred orientation in a 
specimen when attempting quantitative analysis.   

Crystallite Size 
For large crystallites (i.e., thousands of unit cells), diffraction will result in “sharp” 
diffraction peaks only at the precise location of the Bragg angle.  If the particle size is smaller 
(such that there are insufficient lattice planes to effectively cancel all incoherent scattering at 
angles close to the Bragg angle) the net result will be a broadening of the diffraction peak 
around the Bragg angle.  This phenomenon of widening of diffraction peaks is related to 
incomplete “canceling” of small deviations from the Bragg angle in small crystallites is 
known as particle size broadening.  Particle size broadening is differentiated from the normal 
width of diffraction peaks related to instrumental effects.  In most cases, particle size 
broadening will not be observed with crystallite sizes larger than 1 μm. The crystallite size 
broadening (βτ) of a peak can usually be related to the mean crystallite dimension (τ) by the 
Scherrer equation:  

θβ
λτ

τ cos
K

=  

where βτ is the line broadening due to the effect of small crystallites.  Here βτ is given by (B 
– b), B being the breadth of the observed diffraction line at its half-intensity maximum, and b 
the instrumental broadening or breadth of a peak that exhibits no broadening beyond the 

inherent instrumental peak width.  
Note that βτ is given in radians, 
and that K is the shape factor 
which typically has a value of 
about 0.9.  The general relation is 
shown in Fig. 3.21 (Jenkins and 
Snyder, 1996).   

Note that particle size broadening 
is not significant at sizes above 
10,000 Å (1 μm).  When 
instrumental parameters are 
known (i.e., FWHM values for 
crystallites larger than 1 μm), the 
relationship above may be used 
to calculate crystallite sizes as 
small as 10 Å if the structures are 
unstrained.   

It is interesting to think of 
particle size broadening when considering the diffraction pattern obtained from many 
amorphous materials.  Typically these materials (like glass and plastics) will give an 
extremely broad peak over an angular range of perhaps 10° 2θ that will look like a “hump” in 
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the background.  One can think of this “hump” as an extreme example of particle size 
broadening where the short range ordering is on the order of a several angstroms.   

Residual Stress and Strain 
Strain in a material can produce two types of diffraction effects.  If the strain is uniform 
(either tensile or compressive) it is called macrostrain and the unit cell distances will become 

either larger or smaller resulting in a shift in the 
diffraction peaks in the pattern.  Macrostrain 
causes the lattice parameters to change in a 
permanent (but possibly reversible) manner 
resulting in a peak shift.  Macrostrains may be 
induced by glycolation or heating of clay 
minerals.   

Microstrains are produced by a distribution of 
tensile and compressive forces resulting in a 
broadening of the diffraction peaks.  In some 
cases, some peak asymmetry may be the result 
of microstrain.  Microstress in crystallites may 
come from dislocations, vacancies, shear planes, 
etc; the effect will generally be a distribution of 
peaks around the unstressed peak location, and a 
crude broadening of the peak in the resultant 
pattern.  These effects are shown in a very 
generalized way in Figure 3.23 (Jenkins and 
Snyder, 1996).   

 

Conclusions 
This concludes our “theoretical” treatment of the 
diffraction process, including our 
crystallography review, and aspects of the 
crystal structure (peak positions) determination 

and crystal chemistry determination (intensities).   In the next several weeks we will discuss 
the practical aspects of x-ray powder diffraction, and hopefully you will find that the theory 
lurking in the background of your data interpretations will assist greatly in helping to 
understand what your data is telling you.   


