Increasing the Linear Dynamic Range of Sector Field ICP-MS

Meike Hamester

Thermo Electron Bremen, Germany

1

Analyze • Detect • Measure • Control™

Benefits of ICP-MS

- Elemental determinations of almost the whole periodic table
 - Multi-elemental analysis in a single analysis run
 - Lower detection limits compared to Graphite Furnace Atomic Absorption (GFAA) or ICP-OES
 - High productivity with > 30 samples/hour
- Limitations due to spectral interferences
 - From the matrix or argon plasma itself
 - Limits the accuracy

HUUB.met - Method Editor Finnigan ELEMENT										_ 8 ×								
ile J	Edit <u>S</u> etu	p ⊻iew	Resolution	Help							_							
	🗡 🖥	8 8		5 🔇	1			1 السا .	<u>o</u> #	8 🗡	?							
	н																	Не
	Li	Ве											в	С	Ν	0	F	Ne
	Na	Mg											AI	Si	Р	s	СІ	Ar
	к	Са	Sc	ті	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Ī	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Ī	Cs	Ва	La	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	ті	Pb	Bi	Ро	At	Rn
	Fr	Ra	Ac															
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	ть	Dy	Но	Er	Tm	Yb	Lu	
				Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

Who uses ICP-MS?

Analyze • Detect • Measure • Control[™]

Argon Plasma as Ion Source

- Both ICP-MS techniques (Quadrupole and Magnetic Sector) use the same ion source
- Samples are analyzed as solutions or solids
- The Sample is introduced into an argon plasma as a fine aerosol, via a nebulizer and spray chamber or by laser ablation of solid samples
- Within the plasma the solvent is evaporated and the sample species are decomposed into their constituent atoms and ionised
- Ionisation process is extremely efficient in the plasma, and contributes to the high sensitivity of ICP-MS

The drawback of the Argon plasma as an ion source is the formation of spectral interferences

• 27 MHz Argon Plasma

• 6000 K

What are spectral interferences ?

- Molecular species which occur at the same nominal mass as the analyte, they are
 - Formed in the plasma and/or interface
 - Matrix dependent
 - Plasma condition dependent
- They originate from the Argon plasma and the sample matrix

Isotope	Interference
³¹ P	¹⁵ N ¹⁶ O
	¹⁴ N ¹⁶ OH
⁴⁴ Ca	²⁸ Si ¹⁶ O
	$^{12}C^{16}O_2$
	¹⁴ N ₂ ¹⁶ Ō
⁵⁶ Fe	⁴⁰ Ar ¹⁶ O
	⁴⁰ Ca ¹⁶ O
	²⁸ Si ₂
⁶⁰ Ni	⁴⁴ Ca ¹⁶ O
	²³ Na ³⁷ Cl
	²⁸ Si ³² S

Examples for spectral overlaps

The Biggest Problem in ICP-MS: Spectral Interferences

Instrumental Solutions

- High Resolution (SF ICP-MS)
- Cold Plasma
- Collision Cell/Dynamic Reaction Cell (Q ICP-MS)
- Mathematical Calculation

Sample Preparation (Time-consuming, error-prone)

- Pre-concentration/matrix evaporation (off-line)
- *Membrane desolvation (on-line)*
- ETV

Building Blocks of an ICP-MS

Inductively Coupled Plasma Mass Spectrometer

Thermo Electron Factory in Bremen, Germany

Since 1948 producing mass spectrometers

- Organic (MAT 95), IRMS (Triton, Delta, MAT 253/271/281) LTQ-FTMS and since 1994 ICP-MS as single (ELEMENT) and multicollector (Neptune)
- 175 colleagues working on magnetic sector field technology

New Factory

Worldwide 350 ELEMENT

Multi-elementanalysis

Analyze • Detect • Measure • Control™

Key characteristics

Interference free analysis

- Matrix independent
 - -physical separation of interferences
 - multielement settings

High Signal to Noise Ratios

- < 0.2 cps for all 3 resolutions</p>

- across the mass range

Sensitivity:

-LR: 3,000,000 cps per from ~ ⁴⁵Sc upwards

- MR: 3,00,000 cps per ppb from ~ 45 Sc upwards
- HR: 50,000 cps per ppb from ~ 45 Sc upwards

Under same set of conditions

SF ICP-MS for Demanding Applications

- Simultaneous ultra-trace to matrix analysis
- Ultra-trace determinations in complex matrices
- Analysis of radionuclides
- Isotope ratio analysis
- Analysis of fast transient signals
 - Iaser ablation, HPLC
- High throughput analysis

Principle components of a SF ICP-MS

ELECTRON CORPORATION

Dispersion and Focusing – Magnetic Sector

Analyze • Detect • Measure • Control[™]

Electrostatic Sector – Dispersion and Angular Focusing

Analyze • Detect • Measure • Control™

History

• Francis W. Aston

- Tandem Electric field Magnet field
- Resolution ~ 130 (1919)
- Stable Isotopes
- Arthur J. Dempster (1918)
 - 180° magnetic sector
- Josef Mattauch / Richard Herzog (1934)
 - Double focusing mass spectrometer

• Alfred Nier / Edgar G. Johnson (1953)

Double focusing mass spectrometer with corrected second order aberrations

Physical, matrix independent separation of interferences

ELECTRON CORPORATION

⁶⁰Ni in Urine

Analyze • Detect • Measure • Control[™]

Key: matrix independent analysis

Analyze • Detect • Measure • Control™

Why Use High Resolution for ICP-MS?

Example: analysis of chromium in blood

Chromium has four naturally occurring isotopes

Only ⁵²Cr and ⁵³Cr are available:

Chromium in Blood Serum/Urine/Seawater/Soil/Plants.....

Resolution vs. Sensitivity

- The change in mass resolution is achieved by changing the width of the entrance and exit slits of the mass spectrometer:
 - The wider the slit the higher the sensitivity
 - ➢ Fixed ratio between resolutions ⇒ independent of mass and matrix

Signal to Noise Ratio Sector Field ICP-MS 100 ng/L Li, Y, In, TI (<0.2 cps in all resolutions)

Calibration Curve

- IAEA 421 (water), dilution 1+1, Ra-226, Standard Addition

ELECTRON CORPORATION

25

Accuracy and precision CASS3 (0.3% saltmatrix)

"Dilute and shot"

²⁶ Paul Field, Rutgers University

Dual Mode Detection System

Analyze • Detect • Measure • Control™

ELECTRON CORPORATION

27

Dual Mode Detection System

Finnigan ELEMENT 2 Dual Mode Detection System

Analyze • Detect • Measure • Control™

Peak Top Hopping in Both Mode

- Transient signals
 Laser ablation
 Chromatography coupling
- Isotope ratio analysis

Determination of large isotope ratios

ELECTRON CORPORATION

Peak Shape

- The change in mass resolution is achieved by changing the width of the entrance and exit slits of the mass spectrometer:
 - > The wider the slit the higher the sensitivity

FI FCTRON CORPORATION

Isotope Ratio Analysis ²³³U/²³⁸U Ratio IRMM 072/8

Finnigan ELEMENT2: NIST 981 Isotope Ratio Analyses

NIST981 (Natural Pb)

- 1ppbPb (1.6*10e⁶ cps)
- 3 Measurements (each consisting of 10*1min analyses)
- All Pb ratios measured
 - ²⁰⁴Hg on ²⁰⁴Pb corrected for on-line
 - No outlier rejection
 - No correction for mass bias

Pb206/Pb204 Pb207/Pb204 Pb207/Pb206 Pb208/Pb206 Pb208/Pb204 Run 1 16.953611 15.541761 0.916724 2.163897 36.685854 Run 2 16.952012 15.539417 0.916673 2.164276 36.688759 Run 3 16.948784 15.539274 0.916837 2.163845 36.674535 0.916745 2.164006 15.540150 36.683049 Average 16.951469 0.009 %RSD 0.015 0.009 0.011 0.020 Reference NIST 16.937096 15.491345 2.168100 36.721317 0.914640 Accuracy % -0.08 -0.32-0.230.19 0.10

Extended Dynamic Range in the Finnigan ELEMENT XR

Finnigan ELEMENT XR Detection System

Automatic switch to Faraday Detector

'Triple' Detector Mode: ³⁶Ar (LR, log scale)

Finnigan ELEMENT XR : Triple Mode Detection system

Matrix and ultra-traces in one analysis

- 0.2 cps to 1x10¹² cps
 - complete analysis from
 0.1 ppt to 0.1% in LR (solution)

Minimum integration time:

- counting: 0.1 ms
- analog: 1 ms
- Faraday: 1 ms
- No decay time with Faraday detection system
 - Due to integration circuit
- Automatic switching between detection modes
 - no preset
 - < 1 ms to Faraday detection
- Automatic cross calibration

Finnigan ELEMENT XR Cross Calibration

 Mass independent cross calibration
 –e.g. Argon

• Fast

- 3 s for ACF and FCF determination

Reliable

-automatic

- user independent

Finnigan ELEMENT2 Analysis Time

🗳 🗹 😿 🖾 🖾 🔜 🖄

Clinical - Method Editor Finnigan ELEMENT

Element XR Detection System – Filter Lens

Analyze • Detect • Measure • Control[™]

Filter Lens: ICP at ⁴⁰Ar⁴⁰Ar

-20 V

Analyze • Detect • Measure • Control[™]

Applications of ELEMENT XR

• Geological:

- Determination of majors, traces and ultra-traces in survey analyses, replacing complimentary analysis techniques (e.g. AAS or ICP-AES).
- Use of the matrix element as internal standard in laser ablation analysis:
 - Na in fluid inclusions.
 - Al in melt inclusions.
 - Ca in bone / corals / otoliths etc.
 - C in diamond analyses
 - Large isotope ratios
- Concentration determination in minerals by laser ablation.
- Elemental ratios by laser ablation (e.g. Ca / Sr etc).

Finnigan ELEMENT XR with Laser Ablation

Thermo ELECTRON CORPORATION

Analyze • Detect • Measure • Control™

Summary

• Finnigan ELEMENT XR

- -All of the advantages of the ELEMENT2:
 - High sensitivity
 - High resolution for reliable interference removal
 - Dark noise independent of resolution
 - Fast scanning
- -Faraday Detector
 - Increased linear dynamic range (>10¹²)
 - No decay time
 - 1 ms integration time
 - Automatic switching
 - Automatic cross calibration

