Stable isotope ratio measurements using the Finnigan NEPTUNE multicollector ICP-MS

Claudia Bouman Thermo Electron (Bremen)

Analyze • Detect • Measure • Control™

The NEPTUNE

Introduced 2000

Multicollection vs. Single collection

1 detector

Multicollection

Single collection

- Detectors can be
 - Faraday collectors (least sensitive)
 - Analog SEMs
 - Counting SEMs (most sensitive)
 - Or any mixture of above

Multicollection vs. Single collection

- Multicollection: isotopes of interest are measured simultaneously
 - Highest sensitivity (100% duty cycle)
 - Fluctuations in signal intensity have no effect on isotope ratios
 - Need of detector cross calibration for accuracy

Single collection: isotope is measured at any time

- No detector cross calibration error
- *Lower sensitivity (duty cycle < 100%)*
- Measured isotope ratio sensitive to signal fluctuation

()ne

The Evolution of NEPTUNE

The **NEPTUNE** is an evolution of the **TRITON** multicollector combined with the proven **ELEMENT2** ICP source

Analyze + Detect + Measure + Control™

A FAMILY OF INSTRUMENTS FOR HIGH RESOLUTION ISOTOPIC AND ELEMENTAL ANALYSIS

Finnigan™ NEPTUNE High Resolution MC-ICP-MS

Finnigan™ ELEMENT2 High Resolution Single Collector ICP-MS We de ideo to los en enorgènes. La caracteritation de la caracteritatione de la caracter

Finnigan[™] TRITON Thermal Ionization Mass Spectrometer

The Neptune Fountain in Bremen

Schematic overview NEPTUNE

How does it look in reality?

Multi-Collector Top View

lons

67.6

RPQ / Ion Counter

9

Detector system

Variable Multicollector

Multicollector with Multi Ion Counting

 "plug-in" MIC detectors identical in size and interchangeable with Faraday cups

 up to 8 MIC channels plus
 9 Faraday cups can be installed simultaneously

Why Multi Ion Counting ?

1 mV Faraday signal

ca. 60.000 cps on IC

Finnigan NEPTUNE: Applications

Radiogenic isotopes:

Sr, Nd, Hf, Pb and U

Used in geology to:

- date rocks and meteorites
- study evolution processes of Earth and Solar System

Stable isotopes:

e.g., Ca, Fe and Si

Used in biology and chemistry to:

• study biochemical processes in humans, animals and plants

e.g., Li and B

Used in geochemistry to:

study recycling processes on Earth

Major difficulties in measuring stable isotope ratios by ICP techniques:

-Low sensitivity

-Interferences

Interferences part 1

Isobaric *elemental* interferences:

 \rightarrow caused by isotopes of different elements forming atomic ions with the same nominal mass-to-charge ratio (m/z) as the isotopes of interest.

example: ⁴⁸Ti⁺ interferes on ⁴⁸Ca⁺

Isobaric *doubly-* (or *multiply-*) *charged* ion interferences:

 \rightarrow caused by ions consisting of more than one charge

example: ⁸⁶Sr⁺⁺ interferes in ⁴³Ca⁺

Interferences part 2

Isobaric molecular (or poly-atomic) interferences:

 \rightarrow caused by ions consisting of more than one atom

example: ⁴⁰Ar¹⁶O interferes in ⁵⁶Fe⁺

Intense adjacent signals:

 \rightarrow signals of neighbouring ions with a very high intensity may contribute to the signal of an adjacent isotope by tailing

example: ²³⁸U⁺ tails on ²³⁶U⁺

How to deal with interferences ?

```
Example 1:
Interference of <sup>48</sup>Ti<sup>+</sup> on <sup>48</sup>Ca<sup>+</sup>
```

```
Measure an interference-free Ti isotope, i.e. <sup>47</sup>Ti<sup>+</sup>. Determine the amount of <sup>48</sup>Ti<sup>+</sup> using the natural relative abundances.
```

```
{}^{48}\text{Ca}^+corrected for Ti interference = {}^{48}\text{Ca}^+measured - {}^{48}\text{Ti}^+
```

⁴⁷Ti⁺measured X (⁴⁸Ti/⁴⁷Ti)_{natural}

```
Example 2:
Interference of <sup>86</sup>Sr<sup>++</sup> interferes in <sup>43</sup>Ca<sup>+</sup>
```

```
Measure {}^{87}Sr<sup>++</sup> on mass 43.5 (87/2).
Determine the amount of {}^{86}Sr<sup>++</sup> using the natural relative abundances.
```

```
{}^{43}Ca^+ corrected for Sr interference = {}^{43}Ca^+ measured - {}^{86}Sr++
```

```
<sup>87</sup>Sr<sup>++</sup>measured x (<sup>86</sup>Sr/<sup>87</sup>Sr)natural
```


Example: Lithium isotopes

Lithium isotopes: challenges

- Sensitivity
- Background
- Potential interferences

Instrumental mass bias

• Li-standard NIST L-SVEC:

```
measured <sup>7</sup>Li/<sup>6</sup>Li ratio ~15
true <sup>7</sup>Li/<sup>6</sup>Li ratio ~12.15 (Qi et al. 1997)
\rightarrow mass bias ~ 25% !!
```

- No internal correction possible
- External correction by "sample-standard bracketing"

$$\rightarrow \qquad \delta = \left(\frac{\mathsf{R}_{\mathsf{sample}}}{\mathsf{R}_{\mathsf{standard}}}\right) - 1 \times 1000 \ \%$$

Mass bias

Long-term reproducibility of ⁷Li/⁶Li

Li isotopes – analysis sequence

Blank correction

I_{st}-I_{bl} I_{sa}-I_{bl}

Sample normalisation (delta-values)

 $\delta = (R_{sa}/R_{st}-1)x1000$

Li isotopes – example sample/standard

Li - Sensitivity

	Sensitivity	Uptake (µl/min)
Self-aspirating micro-concentric nebuliser	20 V/ppm	80 to 100
Cetac Aridus [™] desolvating nebuliser	400 V/ppm	~90

Interference of doubly charged species: ¹⁴N⁺⁺

Seawater δ^7 Li reported from a customer's lab (BRGM France)

87Li (‰)

Example: Iron isotopes

Iron isotopes: challenges

How to deal with interferences ?

Fe isotopes – high resolution

Peakscan of Fe (wet plasma, 1 ppm Fe, medium resolution slit)

Peakscan of Fe (wet plasma, 1 ppm Fe, medium resolution slit)

Peakscan of Fe (wet plasma, 1 ppm Fe, medium resolution slit)

Fe isotopes - plateau scan

Fe isotopic fractionation along food chain

Potential use of Fe isotopes:

- Study Fe redox cycle
- Trace microbial activity
- Study Fe metabolism in humans

→ Fractionation effects in higher organisms

Walczyk and von Blanckenburg (2005) Int. Journal of Mass Spectrometry V242, 117-134.

Example: Calcium isotopes

Calcium isotopes: challenges

- the extent of isotopic variations are small, so high precision data are required in order to resolve isotopic effects.
- the intense ⁴⁰Ar⁺ ion beam produced by the inductively coupled plasma source cause interferences across the entire Ca mass range.
- \rightarrow High mass resolution is needed

Calcium isotopes: interferences

Isotope	Natural abundance (%)	Faraday cup	Interferences	Resolution required
⁴⁰ Ca	96.941		$^{40}{\rm Ar}^{+}$	192 500
⁴² Ca	0.647	L4	$^{40}\text{Ar}^{1}\text{H}_{2}^{+}$	2200
			$^{14}N_{3}^{+}$	830
⁴³ Ca	0.135	L2	$^{14}N_{3}^{51}H^{+}$	740
⁴⁴ Ca	2.086	L1	${}^{12}C^{16}O_2^{+}$	1280
			$^{14}N_2^{16}O^+$	965
			$^{88}Sr^{2+}$	160 500
⁴⁶ Ca	0.004	H3	⁴⁶ Ti ⁺	43 400
⁴⁸ Ca	0.187	H4	⁴⁸ Ti ⁺	10 500
^{<i>a</i>} Except f	for ${}^{40}\text{Ar}^+$, ${}^{88}\text{Sr}^{2+}$, a	and ^{46,48} Ti ⁺ ,	all interferences	can be sepa-

rated using the 30 μ m entrance slit of the Finnigan Neptune (medium resolution mode) with an edge resolution¹¹ of ~9000.

Wieser et al. (2004) Journal of Analytical Atomic Spectrometry V19, 844-851

5 ppm SRM915a in 3% HNO₃

Background (3% HNO₃)

IAPSO Ca isotope compositions reported from a customer's lab (Ruhr University Bochum)

SRM915a vs. IAPSO Ca standards

Wieser et al. (2004) Journal of Analytical Atomic Spectrometry V19, 844-851

Example: Sulfur (and silicon) isotopes

Sulfur isotopes: challenges

Classical technique to measure S isotopes is by Stable Isotope Mass Spectrometry (like C,N and O isotopes) (e.g., Finnigan Delta series, Finnigan MAT253)

Peter Evans et al. (2004), LGC, Teddington, UK:

"The thermoFinnigan Neptune high resolution multi-collector ICPMS can provide precise, reliable δ^{34} S values in **aqueous** and **solid** samples."

"Internal precision < 0.2 ‰ is routinely achievable."

Peak scan for S isotopes (wet plasma, 10ppm S, medium resolution slit)

Peak scan for Si isotopes (wet plasma, 2ppm Si, medium resolution slit)

The uses of silicon to internally correct for drift in instrumental mass discrimination has two benefits:

1. It reduces the need to bracket samples with standards, significantly increasing sample throughput.

2. Internal correction compensates for matrix induced changes to mass discrimination reducing the need for sample pre-treatment.

Viagra: S isotope composition reported from a customer's lab (LGC, UK)

Viagra (sildenafil) provides a case study for the application of **laser ablated** measurements of δ^{34} S.

Peter Evans et al. (2004), LGC, Teddington, UK.

Summary

• The Finnigan NEPTUNE is a high precision multicollector ICPMS based on a proven ICP-source (ELEMENT2) and an ultimate precision MC-analyzer (TRITON).

• The Finnigan NEPTUNE enables high precise stable isotope measurements due to stable mass bias (e.g. Li).

• The Finnigan NEPTUNE is the first instrument capable of doing high mass resolution multicollector measurements (e.g. Fe, Ca, S, Si).

